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Summary
Taking into account the long-term (2020-2050) Energy Strategy of Romania, and the Integrated National Plan in the Energy and Climate Changing 2021-2030, Dunărea 

de Jos University of Galati, utilizing the industrial partners, will conduct the applied industrial research to provide in the National Grid a clean energy, by harmonics mitigation. 
This paper deals with the Shunt Active Power solution to effi  ciently mitigate the current harmonics within the national power grid. Both numerical and experimental results 
are presented in this paper. The results of this paper are obtained by the benefi ciary and the industrial partner of the „Knowledge transfer regarding the increase of energy 
effi  ciency and intelligent power systems” project, acronym CRESC-INTEL, within the POC Competitiveness Operational Program. The obtained results of this project will 
conduct one innovation-based ecosystem in the European Union research and technological development fi eld. Innovative static power types of equipment ensure an 
increased energy effi  ciency of the power system with a high power factor. Based on the obtained prototype, a mass production of the innovative static power equipment 
will be delivered to the specifi c market, by complying with the available power quality standards. In this way, based on the static power equipment series production, by 
considering alternative power ranges, harmonic cleaning of the national grid is obtained.
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Introduction

Active power fi lters [1-13] derive from the class of static 
power converters and require power semiconductor devices 
with high switching frequency. The active fi lter represents 
a very good solution in installations where the content of 
harmonics cannot be predicted due to the frequent change 
of location and type of equipment. The control of the active 
power fi lters is carried out so that they absorb the harmonics 
that must be eliminated from the grid [14-22]. Electricity 
users need clean energy, without distortions, even if they 
produce electrical pollution through the nature of the non-
linear loads they have. Utility service providers must provide 
clean energy to customers. Thus, there is a need for electrical 
devices that improve power quality. Due to the specifi c profi le 
of the consumer, they produce harmonics, which propagate 
in the supply grid [23-26]. We can enumerate only a few of 
the effects that these harmonics can produce overheating 
of equipment, increased losses through the Joule effect, 

mechanical and electrical oscillations in electrical drives, can 
lead to communication interruptions and failures in control 
systems, trigger safety equipment in unpredictably way and 
premature equipment failure [14]. Since the utility provider 
cannot fully mitigate the disturbances occurring in the grid, 
it asks its customers to comply with standards for limiting 
harmonic pollution within admissible limits: IEEE Std. 519 
in the USA, respectively IEC 61800 in the European Union. 
The Point of Common Coupling (PCC) is the place where 
utility providers interact with the consumer. At this point, 
the harmonic distortion is measured. Among the harmonic 
attenuation techniques, Line Reactors, hybrid passive 
harmonic fi lters (series and parallel), static power converters 
with several pulses (for medium voltages), and active power 
fi lters can be mentioned. Active Power Filters (APFs) can be 
classifi ed according to converter type, topology, and number 
of phases [2-4]. There are two types of converters: Voltage 
Source Inverter (VSI) and Current Source Inverter (CSI). The 
APF topology is classifi ed into three types: Series Active Filters, 
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Parallel or shunt active fi lters (SAPF), and Hybrid active fi lters 
[27-30]. Finally, based on the number of phases, mainly two 
types can be mentioned: the two-wire system (single-phase), 
and the three-phase system with three or four wires.

The technical data of the resulting industrial prototype 
made within the project “Transfer of knowledge regarding the 
increase of energy effi ciency and intelligent power systems”, 
acronym CRESC-INTEL, from the POC Competitiveness 
Operational Program is presented in the Second section. In the 
third Section, the SAPF Matlab/Simulink implementation of 
the p-q control is depicted, along with the simulation results. 
The fourth Section is dedicated to the experimental results of 
the SAPF prototype. Finally, the Conclusions of the research 
work are presented in the last Section.

Three-phase SAPF power circuit injects the harmonic 
current content into the utility system with the same amplitude 
as the harmonic currents generated by a given nonlinear 
load, but with opposite phases to maintain a sinusoidal 
current at the PCC. The main purpose of the active shunt 
fi lter is to compensate for harmonic currents that produce 
an improvement in power factor. A large capacitor connected 
to the DC bus of the converter acts as a voltage Source the 
Active Parallel Filter (SAPF) offers several advantages such as 
source inductance does not affect the harmonic compensation 
capability of the SAPF system, it is cost-effective for low to 
medium kVA industrial loads.

The reference currents of the SAPF are generated based on 
the instantaneous power theory [31]. Based on the reference 
currents, the SAPF can compensate only the power factor, 
harmonic currents, or both power factor and harmonic currents 
(total compensation capability).

The industrial prototype technical data

In the fi rst stage, by an adequate design, the main 
parameters of the active power fi lter are obtained. Through 
mathematical modeling and numerical implementation, one 
of the resulting industrial prototypes is based on the main 
technical data: the rated voltage of the active power fi lter is 
400Vac. According to the specifi c European Union power 
quality standards (EN 61000-6-2, EN 61000-6-4, EN 50178), 
the voltage fl uctuation is within ± 10%. The rated frequency is 
50 Hz with an admissible fl uctuation of ± 4%. The rated current 
load of the industrial prototype is 100A. The prototype is force 
cooling, reducing the power loss of the APF. To manage the 
data information, the communications within the three-phase 
shunt active power fi lter are based on the following interfaces: 
ETHERNET, RS 232/485, CAN, and USB. The LabView FPGA 
software has been used to implement the instantaneous power 
(PQ) control. The full scale of the prototype is 810 x 360 x 1400 
mm.

By comparing the SAPF with the passive power fi lters, the 
fi rst category has the following advantages:

- No overcharged grid current due to the nonlinear loads

- The desired currents to be compensated can be selected

- THD and/or power factor can be compensated 
individually or both of them;

- The higher precision can be obtained due to the 
dynamical harmonic load current compensation.

In Figure 1 the industrial prototype active power fi lter of the 
industrial partner is presented.

Numerical implementation of active power 
fi lter systems

In this section, the dynamic models of the power supply 
systems are presented, which contain the power supply, the 
non-linear six-pulse bridge uncontrolled rectifi er load, the 
static power equipment for active harmonic elimination in the 
national power grid, the active power fi lter (Figures 1,2) with 
the control structure based on the method of instantaneous 
powers p-q. Thus, for industrial partners, following the 
research carried out, the active power fi lter contains the 
method of controlling the instantaneous active and reactive 
power (p-q) [31-39].

Figure 3 shows the implementation in the numerical 
simulation environment of the topology of the shunt active 
three-phase power fi lter type.

The architecture of the SAPF (Figure 2) is based on the 
power circuit and the control circuit. Three-phase Voltage 
Source Converter (VSC) consists of one bridge based on six 
IGBTs’ power semiconductors. The SAPF is connected in 
the PCC delivering the appropriate opposite high harmonic 
currents to compensate the load harmonic currents. In this 
way, the SAPF cleans the source currents of higher harmonics. 

The SAPF control algorithm is based on the theory of 
instantaneous powers. A typical connection of the inverter-
based SAPF system with the control algorithm is shown in 
Figure 2. The SAPF control structure contains four subsystems: 
extraction of harmonics based on an instantaneous powers 

Figure 1: The SAPF industrial prototype.
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algorithm; an algorithm for adjusting the voltage of the 
DC link capacitor; the current control algorithm, and the 
synchronization algorithm.

The synchronization algorithm plays an important role in 
controlling the operation of the SAPFs to ensure the operation 
of the SAPF in phase with the power system. 

In Figure 4 the numerical results of the DC link voltage loop 
are shown. At the t = 0.02 the precharge phase is initiated. The 
DC link voltage is fastly controlled by the adequate PI controller. 
At instant t = 0.1s the rated reference of the DC link voltage is 
applied and correctly followed by the measured DC link voltage. 

The obtained numerical results revealed the performance of 
the SAPF. In this way, in Figure 4 the grid impact of the SAPF 
connection can be underlined. As can be observed (Figure 5), 
without the SAPF connection, the source current is distorted 
(t< = 0.02s). The pre-charging phase comes with the sinusoidal 
source current, but the performance capability of the SAPF is 
evaluated at the rated DC link voltage (t> = 0.1s).

By applying the SAPF instantaneous power control, the 
reference currents of the APF are presented in Figure 6.

In Figure 7 the currents drawn into the non-linear load are 
depicted. The unitary power factor operation is demonstrated 
in Figure 8, through the source voltage and source current.

In Figure 9 the Total Harmonic Distortion (THD) of the 
source current (red signal) caused by nonlinear load is obtained. 
A large THDi = 27.66% is obtained.

The connection of the SHAPF reduces the THD value of the 
source current to 3.72%, as is depicted in Figure 10.

The corresponding THD voltage value without SAPF 
connection is THDu = 17.37% (Figure 11), and THDu = 3.86% 
(Figure 12) by SAPF connection, as it is shown in Figure 12.

Experimental results

In this section, the waveforms resulting from the prototype 
implementation of the p-q control method are presented. In 
Figures 13,14, the waveforms of voltage and current are shown 
following the supply of a non-linear load without an SAPF 
connection.

The obtained SAPF experimental results can be analyzed 
through the THD quality indicator. Without SAPF connection 
both the supply current and voltage are highlighted in Figure 
15. The nonlinear load conducts to a non-sinusoidal source 
voltage.

In Figure 16 the voltage source harmonic analysis is 
performed. Without SAPF the high value of THDu = 0.9% is 

Figure 2: Topology of the active power fi lter. Implementation in the numerical 
simulation environment.

Figure 3: The control software implementation of the instantaneous active and reactive power (pq) control method.
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obtained. At the same time, the high value of the current source 
distortion is obtained THDi = 62.7% (Figure 17).

By SAPF connecting, the obtained experimental results 
show a signifi cant improvement in harmonic mitigation. The 
voltage harmonics content is reduced to (Figure 18), and the 
supply current content is reduced to (Figure 19), respectively. 

By connecting the SAPF, in Figure 19, the experimental 
results of the obtained power supply current signal are 
highlighted.

Figure 4: Numerical results obtained through the numerical implementation of the 
voltage control loop in the DC link of the active power fi lter.

Figure 5: The waveforms of the voltage of the power supply and of the current 
absorbed from the grid.

Figure 6: The reference current synthesized by the active power fi lter by the active 
and reactive instantaneous power control method (pq).

Figure 7: Non-linear load current.

Figure 8: Current and voltage of the one-phase power source.

Figure 9: Harmonic analysis of the current through the power supply without 
connecting the active power fi lter (signal highlighted in red).

For a qualitative evaluation of the SAPF infl uence, both the 
experimental supply phase voltage and current are prelevated 
by using the Power analyzer (Figure 20).

The obtained experimental power quality indicators in the 
presence of SAPF in the Point of Common Coupling (PCC) show 
good harmonic performances, as is fi gured in Figure 21 for 
supply voltage THDu = 0.3% , and in Figure 22 for the supply 
current THDi = 8.4%.
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Figure 10: Harmonic analysis of the current through the power supply after 
connecting the active power fi lter (signal highlighted in red).

Figure 11: Harmonic analysis of the voltage through the power supply without 
connecting the active power fi lter (signal highlighted in red). Us-THDu without APF.

Figure 12: Harmonic analysis of the current through the power supply after 
connecting the active power fi lter (signal highlighted in red).

Conclusion

The main result of the subsidiary contract with the Smartech 
industrial partner consists of the SAPF prototype. The accuracy 
of the mathematical modeling of the SAPF p-q control strategy 

Figure 13: Supply voltage waveforms without SAPF connection.

Figure 14: The perturbed supply current due to the nonlinear load without SAPF 
connection.

Figure 15: The experimental supply voltage and current signals on phase 1, without 
SAPF connection.

Figure 16: The experimental THDu of the source voltage without SAPF control.
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is sustained by the obtained simulation results from the Matlab/
Simulink numerical implementation By using a dedicated FPGA 
platform, the successful implementation of the instantaneous 
power theory control is demonstrated through the obtained 
experimental results. Therefore, both the simulation and 
experimental results are presented in this paper. In the case of 
the nonlinear loads, the obtained power quality performances 
reveal that both unity power factor operation and harmonics 
compensation (reactive power compensation) are performed 
through the SAPF industrial prototype. The technical data of 
the industrial prototype made within the CRESC-INTEL project 
have been presented, as well as an image of the physical 
industrial prototype has been delivered.
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